Bài 24 (trang 111-112 SGK Toán 9 Tập 1): Cho đường tròn (O), dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm C. a) Chứng minh rằng CB là tiếp tuyến của đường tròn. b) Cho bán kính của đường tròn bằng 15cm, AB = 24 cm
Đề bài 24 trang 111 SGK Toán 9 tập 1. Cho đường tròn (O) ( O), dây AB A B khác đường kính. Qua O O kẻ đường vuông góc với AB A B, cắt tiếp tuyến tại A A của đường tròn ở điểm C C. a) Chứng minh rằng CB C B là tiếp tuyến của đường tròn. b) Cho bán kính của đường tròn
Đề bài - trả lời luyện tập vận dụng 1 trang 48 sgk toán 6 cánh diều b) Số 8 không phải là ước chung của 14 và 48 vì 8 là ước của 48 nhưng không phải là ước của 14.
Luyện tập Bài §4, Đường thẳng song song và đường thẳng cắt nhau, chương II – Hàm số bậc nhất, sách giáo khoa toán 9 tập một
Bài 24 (trang 84 SGK Toán 9 Tập 1): Sắp xếp các tỉ số lượng giác sau theo thứ tự Bài 25 (trang 84 SGK Toán 9 Tập 1): So sánh: Các bài giải Toán 9 Tập 1 Chương 1 khác: Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông. Bài 2: Tỉ số lượng giác của góc nhọn
Bài Tập 24 Trang 111 SGK Hình Học Lớp 9 – Tập 1. Cho đường tròn (O), dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm C. a. Chứng minh rằng CB là tiếp tuyến của đường tròn. b. Cho bán kính của đường tròn bằng 15cm
w2dOzbI. Bài 24 trang 111 SGK Toán 9 tập 1 được hướng dẫn chi tiết giúp bạn giải bài tập trang 111 sách giáo khoa Toán lớp 9 tập 1 và ôn tập các kiến thức đã muốn giải bài 24 trang 111 SGK Toán 9 tập 1 không nên bỏ qua bài viết này. Với những hướng dẫn chi tiết, không chỉ tham khảo cách làm hoặc đáp án mà bài viết này còn giúp bạn nắm vững lại các kiến thức Toán 9 chương 1 phần hình học về dấu hiệu nhận biết tiếp tuyến của đường tròn để tự tin giải tốt các bài tập bài 24 trang 111 SGK Toán 9 tập 1Cho đường tròn \O\, dây \AB\ khác đường kính. Qua \O\ kẻ đường vuông góc với \AB\, cắt tiếp tuyến tại \A\ của đường tròn ở điểm \C\.a Chứng minh rằng \CB\ là tiếp tuyến của đường Cho bán kính của đường tròn bằng \15cm,\ AB=24cm\. Tính độ dài \OC\.» Bài tập trước Bài 23 trang 111 SGK Toán 9 tập 1Giải bài 24 trang 111 SGK Toán 9 tập 1Hướng dẫn cách làma Dùng dấu hiệu nhận biết tiếp tuyến Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là một tiếp tuyến của đường dụng tính chất+ Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.+ Nếu một đường thẳng là tiếp tuyến của đường tròn thì nó vuông góc với bán kính đi qua tiếp điểm Sử dụng định lí Pytago \\Delta ABC\ vuông tại \A\, khi đó \BC^2=AC^2+AB^2\.Sử dụng hệ thức lượng trong tam giác vuông \\Delta ABC\, vuông tại \A\, \AH \bot BC\, khi đó \AB^2= án chi tiếtDưới đây là các cách giải bài 24 trang 111 SGK Toán 9 tập 1 để các bạn tham khảo và so sánh bài làm của mìnha Gọi \H\ là giao điểm của \OC\ và \AB\.Vì \OH\perp AB\ nên \HA=HB\ Định lý 2 - trang 103.Suy ra \OC\ là đường trung trực của \AB\, do đó \CB=CA.\Xét \\Delta CBO\ và \\Delta CAO\ có\CO\ chung GT\CA=CB\ cmt\OB=OA=R\Suy ra \\Delta CBO=\Delta CAO\ \widehat{CBO}=\widehat{CAO}\. 1Vì \AC\ là tiếp tuyến của đường tròn \O\ nên\AC\perp OA\Rightarrow \widehat{CAO}=90^{\circ}\ 2Từ 1 và 2 suy ra \\widehat{CBO}=90^{\circ}\.Tức là \CB\ vuông góc với \OB\, mà \OB\ là bán kính của \O\.Vậy \CB\ là tiếp tuyến của đường tròn \O\.b Ta có \OA=OB=R=15;\\\ HA=\dfrac{AB}{2}=\dfrac{24}{2}=12\.Xét tam giác \HOA\ vuông tại \H\, áp dụng định lí Pytago, ta có\OA^2=OH^2+AH^2\\\Leftrightarrow OH^{2}=OA^{2}-AH^{2}=15^{2}-12^{2}=81\\\Rightarrow OH=\sqrt{81}=9cm\Xét tam giác \BOC\ vuông tại \B\, áp dụng hệ thức lượng trong tam giác vuông, ta có\OB^{2}=OC\cdot OH \Rightarrow OC=\dfrac{OB^{2}}{OH}=\dfrac{15^2}{9}=25cm.\» Bài tiếp theo Bài 25 trang 111 SGK Toán 9 tập 1Nội dung trên đã giúp bạn nắm được cách làm và đáp án bài 24 trang 111 SGK Toán 9 tập 1. Mong rằng những bài hướng dẫn giải Toán 9 của Đọc Tài Liệu sẽ là người đồng hành giúp các bạn học tốt môn học còn vấn đề gì băn khoăn?Vui lòng cung cấp thêm thông tin để chúng tôi giúp bạn
Bài 24 trang 111, 112 Toán 9 Tập 1Giải bài 24 trang 111, 112 SGK Dấu hiệu nhận biết tiếp tuyến của đường tròn với hướng dẫn và lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa môn Toán 9, các bài giải tương ứng với từng bài học trong sách giúp cho các bạn học sinh ôn tập và củng cố các dạng bài tập, rèn luyện kỹ năng giải môn 24 SGK Toán 9 tập 1 trang 111 112Bài 24 trang 111 112 SGK Cho đường tròn O, dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm Chứng minh rằng CB là tiếp tuyến của đường Cho bán kính của đường tròn bằng 15cm, AB = 24 cm. Tính độ dài dẫn giải- Nếu một đường thẳng là tiếp tuyến của một đường tròn thì nó vuông góc với bán kính đi qua tiếp Để nhận biết một đường thẳng là tiếp tuyến của một đường tròn ta có hai dấu hiệu sau+ Dấu hiệu 1 Đường thẳng và đường tròn chỉ có một điểm chung định nghĩa tiếp tuyến.+ Dấu hiệu 2 Đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm giải chi tiếta Gọi H là giao điểm của OC và AB, ΔAOB cân tại O OA = OB, bán kính.OH là đường cao nên cũng là đường phân AC là tiếp tuyến tại A của đường tròn O Xét tam giác OAC và tam giác OBC có”OA = OB bằng bán kính chứng minh trênOC là cạnh chung=> CB vuông góc với OB, mà OB là bán kính của đường tròn O⇒ CB là tiếp tuến của đường tròn O tại B. điều phải chứng minhb Ta cóHO vuông góc AB nên H là trung điểm của AB=> HA = BH = AB/2 = 12Xét tam giác OAH vuông tại H, áp dụng định lí Pi – ta – go ta cóXét tam giác vuông OAC có đường cao AH, áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta cóVậy OC = 25 cm-> Bài tiếp theo Bài 25 trang 112 SGK Toán 9 tập 1-Trên đây GiaiToan đã chia sẻ Giải Toán 9 Bài 5 Dấu hiệu nhận biết tiếp tuyến của đường tròn giúp học sinh nắm chắc Chương 2 Đường tròn. Hy vọng với tài liệu này sẽ giúp ích cho các bạn học sinh tham khảo, chuẩn bị cho bài giảng sắp tới tốt hơn. Chúc các bạn học tập tốt!Lượt xem 656 Chủ đề liên quan
Nhận xét. Ở câu a ta đã dùng dấu hiệu nhận biết tiếp tuyến để chứng minh CB là tiếp tuyến của đường tròn O. Ta cũng có thể dựa vào tính chất đối xứng của đường kính để chứng minh CB là tiếp tuyến. Thực vậy B và A đối xứng qua đường thẳng chứa đường kính CO, mà CA là tiếp tuyến nên CB phải là tiếp tuyến. Bài 24 trang 111 sgk Toán 9 - tập 1 Cho đường tròn O, dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm C. a Chứng minh rằng CB là tiếp tuyến của đường tòn. b Cho bán kính của đường tròn bằng 15cm, AB=24cm. Tính độ dài OC. Giải a Gọi H là giao điểm của OC và AB. Vì\OH\perp AB\ nên \HA=HB\, suy ra OC là đường trung trực của AB, do đó \CB=CA.\ \\Delta CBO=\Delta CAO\ \\Rightarrow \widehat{CBO}=\widehat{CAO}\.Có thể bạn quan tâmTuyên bố cho ngày 24 tháng 2 năm 2023 là gì?Ngày 23 tháng 1 năm 2023 có phải là ngày lễ ở iloilo không?1 cây vàng bao nhiêu ounceCác bài học Trường Chúa nhật Baptist dành cho NGƯỜI LỚN pdf 20231 viên Tylenol bao nhiêu mg? Vì AC là tiếp tuyến của đường trong O nên \AC\perp OA\Rightarrow \widehat{CAO}=90^{\circ}\. Do đó\\widehat{CBO}=90^{\circ}\. Vậy CB là tiếp tuyến của đường tròn O. b Xét tam giác HOA vuông tại H, có \OH^{2}=OA^{2}-AH^{2}\ \=15^{2}-12^{2}=81\ \\Rightarrow OH=9cm\ Xét tam giác BOC vuông tại B, có \OB^{2}=OC\cdot OH\ \\Rightarrow OC=\frac{OB^{2}}{OH}=\frac{225}{9}=25cm.\ Nhận xét. Ở câu a ta đã dùng dấu hiệu nhận biết tiếp tuyến để chứng minh CB là tiếp tuyến của đường tròn O. Ta cũng có thể dựa vào tính chất đối xứng của đường kính để chứng minh CB là tiếp tuyến. Thực vậy B và A đối xứng qua đường thẳng chứa đường kính CO, mà CA là tiếp tuyến nên CB phải là tiếp tuyến. Bài 25 trang 111 sgk Toán 9 - tập 1 Cho đường tròn tâm O có bán kính OA=R, dây BC vuông góc với OA tại trung điểm M của OA. a Từ giác OCAB là hình gì? Vì sao? b Kẻ tiếp tuyến với đường tròn tại B, nó cắt đường thẳng OA tại E. Tính độ dài BE theo R. Hướng dẫn giải a Ta có\OA\perp BC\Rightarrow MB=MC\. Mặt khác \MA=MO\ nên tứ giác ABOC là hình bình hành. Hình bình hành này có hai đường chéo vuông góc nên là hình thoi. b Ta có \BA=BO\ hai cạnh hình thoi mà \BO=OA\ bán kính nên tam giác ABO là tam giác đều. Suy ra\\widehat{BOA}=60^{\circ}\. Ta có EB là tiếp tuyến\\Rightarrow EB\perp OB\. Xét tam giác BOE vuông tại B, có \BE=BO\cdot tg60^{\circ}=
Lý thuyết1. Dấu hiệu nhận biết tiếp tuyến của đường tròn2. Áp dụngLuyện tập1. Giải bài 24 trang 111 sgk Toán 9 tập 12. Giải bài 25 trang 112 sgk Toán 9 tập 1 Luyện tập Bài §5. Dấu hiệu nhận biết tiếp tuyến của đường tròn, chương II – Đường tròn, sách giáo khoa toán 9 tập một. Nội dung bài giải bài 24 25 trang 111 112 sgk toán 9 tập 1 bao gồm tổng hợp công thức, lý thuyết, phương pháp giải bài tập phần hình học có trong SGK toán để giúp các em học sinh học tốt môn toán lớp 9. Lý thuyết 1. Dấu hiệu nhận biết tiếp tuyến của đường tròn ĐỊNH LÍ Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là một tiếp tuyến của đường tròn. 2. Áp dụng Bài toán Qua điểm A ngoài đường tròn $O$ hãy dựng tiếp tuyến của đường tròn. Cách dựng – Dựng $M$ là trung điểm $AO$. – Dựng đường tròn tâm $M$ bán kính $MO$ cắt $O$ tại $B, C.$ – Kẻ các đường thẳng $AB$ và $AC$. Ta được các tiếp tuyến cần dựng. Dưới đây là Hướng dẫn giải bài 24 25 trang 111 112 sgk toán 9 tập 1. Các bạn hãy đọc kỹ đầu bài trước khi giải nhé! giới thiệu với các bạn đầy đủ phương pháp giải bài tập phần hình học 9 kèm bài giải chi tiết bài 24 25 trang 111 112 sgk toán 9 tập 1 của bài §5. Dấu hiệu nhận biết tiếp tuyến của đường tròn trong chương II – Đường tròn cho các bạn tham khảo. Nội dung chi tiết bài giải từng bài tập các bạn xem dưới đây Giải bài 24 25 trang 111 112 sgk toán 9 tập 1 1. Giải bài 24 trang 111 sgk Toán 9 tập 1 Cho đường tròn $O$, dây $AB$ khác đường kính. Qua $O$ kẻ đường vuông góc với $AB$, cắt tiếp tuyến tại $A$ của đường tròn ở điểm $C$. a Chứng minh rằng $CB$ là tiếp tuyến của đường tròn. b Cho bán kính của đường tròn bằng $15cm, AB = 24cm$. Tính độ dài $OC$. Bài giải a Ta có $AC$ là tiếp tuyến của $O$ nên $\widehat{OAC} = 90^0 1$ Gọi $E$ là giao điểm của $AB$ và $OC$ Tam giác $AOB$ có $OA = OB$ bán kính đường tròn Nên tam giác $AOB$ cân tại $O$. Đường cao $OE$ của tam giác cân $AOB$ cũng là phân giác. Nên $\widehat{O_1} = \widehat{O_2}$ Xét hai tam giác $AOC$ và $BOC$ có $OA = OB = R$ $OC$ chung $\widehat{O_1} = \widehat{O_2}$ Do đó $\Delta AOC = \Delta BOC$ Suy ra $\widehat{OAC} = \widehat{OBC} 2$ Từ 1 và 2 suy ra $\widehat{OBC} = 90^0$, nghĩa là $CB \perp OB.$ Do đó $CB$ là tiếp tuyến của đường tròn $O đpcm$ b Bán kính của đường tròn bằng 15, tức $OA = 15cm$ Ta có $OE \perp AB$ Suy ra $EA = EB = \frac{AB}{2} = \frac{24}{2} = 12$ Áp dụng định lí Pi-ta-go trong tam giác $AOE$ vuông tại $E$, ta có $OE^2 = OA^2 – AE^2$ $= 15^2 – 12^2 = 225 – 144 = 81$ $⇒ OE = \sqrt{81} = 9$ Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền trong tam giác vuông $AOC$, ta có $OA^2 = $⇒ OC = \frac{OA^2}{OE} = \frac{15^2}{9} = 25$ Vậy $OC = 25 cm.$ 2. Giải bài 25 trang 112 sgk Toán 9 tập 1 Cho đường tròn tâm $O$ có bán kính $OA = R$, dây $BC$ vuông góc với $OA$ tại trung điểm $M$ của $OA$. a Tứ giác $OCAB$ là hình gì? Vì sao? b Kẻ tiếp tuyến với đường tròn tại $B$, nó cắt đường thẳng $OA$ tại $E$. Tính độ dài $BE$ theo $R$. Bài giải a Ta có $MB = MC$ vì $OA \perp BC$ tại M $MO = MA$ M là trung điểm của OA Tứ giác $OCAB$ có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành. Mặt khác hình bình hành $OCAB$ có hai đường chéo $OA$ và $BC$ vuông góc với nhau. Nên tứ giác $OCAB$ là hình thoi. b Ta có $OB = BA = OA = R$ vì $OCAB$ là hình thoi Nên tam giác $OBA$ đều. Suy ra $\widehat{AOB} = 60^0$ hay $\widehat{EOB} = 60^0$ Áp dụng tỉ số lượng giác của góc nhọn trong tam giác $OBE$, ta có $tg \widehat{EOB} = \frac{BE}{OB}$ $⇒ BE = 60^0 = R\sqrt{3}$ Vậy $BE = R\sqrt{3}$ Bài trước Giải bài 21 22 23 trang 111 sgk Toán 9 tập 1 Bài tiếp theo Giải bài 26 27 28 29 trang 115 116 sgk Toán 9 tập 1 Xem thêm Các bài toán 9 khác Để học tốt môn Vật lí lớp 9 Để học tốt môn Sinh học lớp 9 Để học tốt môn Ngữ văn lớp 9 Để học tốt môn Lịch sử lớp 9 Để học tốt môn Địa lí lớp 9 Để học tốt môn Tiếng Anh lớp 9 Để học tốt môn Tiếng Anh lớp 9 thí điểm Để học tốt môn Tin học lớp 9 Để học tốt môn GDCD lớp 9 Chúc các bạn làm bài tốt cùng giải bài tập sgk toán lớp 9 với giải bài 24 25 trang 111 112 sgk toán 9 tập 1! “Bài tập nào khó đã có
bài 24 trang 111 sgk toán 9 tập 1